Bacterial virulence mediated by orthogonal post-translational modification

Many bacterial pathogens secrete virulence factors, also known as effector proteins, directly into host cells. These effectors suppress pro-inflammatory host signaling while promoting bacterial infection. A particularly interesting subset of effectors post-translationally modify host proteins using novel chemistry that is not otherwise found in the mammalian proteome, which we refer to as ‘orthogonal post-translational modification’ (oPTM). In this Review, we profile oPTM chemistry for effectors that catalyze serine/threonine acetylation, phosphate β-elimination, phosphoribosyl-linked ubiquitination, glutamine deamidation, phosphocholination, cysteine methylation, arginine N-acetylglucosaminylation, and glutamine ADP-ribosylation on host proteins. AMPylation, a PTM that could be considered orthogonal until only recently, is also discussed. We further highlight known cellular targets of oPTMs and their resulting biological consequences. Developing a complete understanding of oPTMs and the host cell processes they hijack will illuminate critical steps in the infection process, which can be harnessed for a variety of therapeutic, diagnostic, and synthetic applications.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

265,23 € per year

only 22,10 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

An intra-bacterial activity for a T3SS effector

Article Open access 23 January 2020

Identification of targets of AMPylating Fic enzymes by co-substrate-mediated covalent capture

Article 06 July 2020

Deciphering functional roles of protein succinylation and glutarylation using genetic code expansion

Article Open access 26 March 2024

References

  1. Brodsky, I. E. & Medzhitov, R. Targeting of immune signalling networks by bacterial pathogens. Nat. Cell Biol.11, 521–526 (2009). ArticleCASPubMedGoogle Scholar
  2. Baxt, L. A., Garza-Mayers, A. C. & Goldberg, M. B. Bacterial subversion of host innate immune pathways. Science340, 697–701 (2013). ArticleCASPubMedGoogle Scholar
  3. Costa, T. R. D. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol.13, 343–359 (2015). ArticleCASPubMedGoogle Scholar
  4. Buchrieser, C. et al. The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol. Microbiol.38, 760–771 (2000). ArticleCASPubMedGoogle Scholar
  5. Hubber, A. & Roy, C. R. Modulation of host cell function by Legionella pneumophila type IV effectors. Annu. Rev. Cell Dev. Biol.26, 261–283 (2010). ArticleCASPubMedGoogle Scholar
  6. Ribet, D. & Cossart, P. Post-translational modifications in host cells during bacterial infection. FEBS Lett.584, 2748–2758 (2010). ArticleCASPubMedGoogle Scholar
  7. Collier, R. J. & Cole, H. A. Diphtheria toxin subunit active in vitro. Science164, 1179–1181 (1969). ArticleCASPubMedGoogle Scholar
  8. Mukherjee, S. et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science312, 1211–1214 (2006). This article reports the discovery of Ser/Thr acetylation.ArticleCASPubMedGoogle Scholar
  9. Mittal, R., Peak-Chew, S. Y. & McMahon, H. T. Acetylation of MEK2 and I kappa B kinase (IKK) activation loop residues by YopJ inhibits signaling. Proc. Natl. Acad. Sci. USA103, 18574–18579 (2006). ArticleCASPubMedPubMed CentralGoogle Scholar
  10. Ma, K.-W. & Ma, W. YopJ family effectors promote bacterial infection through a unique acetyltransferase activity. Microbiol. Mol. Biol. Rev.80, 1011–1027 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  11. Jones, R. M. et al. Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host Microbe3, 233–244 (2008). ArticleCASPubMedGoogle Scholar
  12. Trosky, J. E. et al. VopA inhibits ATP binding by acetylating the catalytic loop of MAPK kinases. J. Biol. Chem.282, 34299–34305 (2007). ArticleCASPubMedGoogle Scholar
  13. Orth, K. et al. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science290, 1594–1597 (2000). ArticleCASPubMedGoogle Scholar
  14. Orth, K. et al. Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. Science285, 1920–1923 (1999). ArticleCASPubMedGoogle Scholar
  15. Meinzer, U. et al. Yersinia pseudotuberculosis effector YopJ subverts the Nod2/RICK/TAK1 pathway and activates caspase-1 to induce intestinal barrier dysfunction. Cell Host Microbe11, 337–351 (2012). ArticleCASPubMedGoogle Scholar
  16. Paquette, N. et al. Serine/threonine acetylation of TGFβ-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling. Proc. Natl. Acad. Sci. USA109, 12710–12715 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  17. Mukherjee, S., Hao, Y. H. & Orth, K. A newly discovered post-translational modification—the acetylation of serine and threonine residues. Trends Biochem. Sci.32, 210–216 (2007). ArticleCASPubMedGoogle Scholar
  18. Zhang, Z. M. et al. Structure of a pathogen effector reveals the enzymatic mechanism of a novel acetyltransferase family. Nat. Struct. Mol. Biol.23, 847–852 (2016). ArticleCASPubMedGoogle Scholar
  19. Zhang, Z. M. et al. Mechanism of host substrate acetylation by a YopJ family effector. Nat. Plants3, 17115 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  20. Monack, D. M., Mecsas, J., Bouley, D. & Falkow, S. Yersinia-induced apoptosis in vivo aids in the establishment of a systemic infection of mice. J. Exp. Med.188, 2127–2137 (1998). ArticleCASPubMedPubMed CentralGoogle Scholar
  21. Du, F. & Galán, J. E. Selective inhibition of type III secretion activated signaling by the Salmonella effector AvrA. PLoS Pathog.5, e1000595 (2009). ArticlePubMedPubMed CentralCASGoogle Scholar
  22. Li, H. et al. The phosphothreonine lyase activity of a bacterial type III effector family. Science315, 1000–1003 (2007). This article reports the discovery of phosphothreonine lyase activity.ArticleCASPubMedGoogle Scholar
  23. Arbibe, L. et al. An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses. Nat. Immunol.8, 47–56 (2007). ArticleCASPubMedGoogle Scholar
  24. Gulig, P. A. et al. Molecular analysis of spv virulence genes of the Salmonella virulence plasmids. Mol. Microbiol.7, 825–830 (1993). ArticleCASPubMedGoogle Scholar
  25. Zhu, Y. et al. Structural insights into the enzymatic mechanism of the pathogenic MAPK phosphothreonine lyase. Mol. Cell28, 899–913 (2007). ArticleCASPubMedGoogle Scholar
  26. Chen, L. et al. Structural basis for the catalytic mechanism of phosphothreonine lyase. Nat. Struct. Mol. Biol.15, 101–102 (2008). ArticlePubMedCASGoogle Scholar
  27. Ke, Z., Smith, G. K., Zhang, Y. & Guo, H. Molecular mechanism for eliminylation, a newly discovered post-translational modification. J. Am. Chem. Soc.133, 11103–11105 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  28. Chambers, K. A., Abularrage, N. S. & Scheck, R. A. Selectivity within a family of bacterial phosphothreonine lyases. Biochemistry57, 3790–3796 (2018). ArticleCASPubMedGoogle Scholar
  29. Schmutz, C. et al. Systems-level overview of host protein phosphorylation during Shigella flexneri infection revealed by phosphoproteomics. Mol. Cell. Proteomics12, 2952–2968 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  30. Lippmann, J. et al. Bacterial internalization, localization, and effectors shape the epithelial immune response during Shigella flexneri Infection. Infect. Immun.83, 3624–3637 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  31. Chambers, K. A., Abularrage, N. S., Hill, C. J., Khan, I. H. & Scheck, R. A. A chemical probe for dehydrobutyrine. Angew. Chem. Int. Edn Engl.59, 7350–7355 (2020). ArticleCASGoogle Scholar
  32. Peeler, J. C., Schedin-Weiss, S., Soula, M., Kazmi, M. A. & Sakmar, T. P. Isopeptide and ester bond ubiquitination both regulate degradation of the human dopamine receptor 4. J. Biol. Chem.292, 21623–21630 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  33. Golnik, R., Lehmann, A., Kloetzel, P. M. & Ebstein, F. Major histocompatibility complex (MHC) class I processing of the NY-ESO-1 antigen is regulated by Rpn10 and Rpn13 proteins and immunoproteasomes following non-lysine ubiquitination. J. Biol. Chem.291, 8805–8815 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  34. Bhogaraju, S. et al. Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination. Cell167, 1636–1649.e13 (2016). This article, along with ref. 35, reports the discovery of phosphoribose ubiquitin transferase activity.ArticleCASPubMedGoogle Scholar
  35. Kotewicz, K. M. et al. A single Legionella effector catalyzes a multistep ubiquitination pathway to rearrange tubular endoplasmic reticulum for replication. Cell Host Microbe21, 169–181 (2017). This article, along with ref. 34, reports the discovery of phosphoribose ubiquitin transferase activity.ArticleCASPubMedGoogle Scholar
  36. Qiu, J. et al. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature533, 120–124 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  37. Dong, Y. et al. Structural basis of ubiquitin modification by the Legionella effector SdeA. Nature557, 674–678 (2018). ArticleCASPubMedGoogle Scholar
  38. Wang, Y. et al. Structural insights into non-canonical ubiquitination catalyzed by SidE. Cell173, 1231–1243.e16 (2018). ArticleCASPubMedGoogle Scholar
  39. Akturk, A. et al. Mechanism of phosphoribosyl-ubiquitination mediated by a single Legionella effector. Nature557, 729–733 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  40. Kalayil, S. et al. Insights into catalysis and function of phosphoribosyl-linked serine ubiquitination. Nature557, 734–738 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  41. Qiu, J. et al. A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination. Cell Res.27, 865–881 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  42. Wan, M. et al. Deubiquitination of phosphoribosyl-ubiquitin conjugates by phosphodiesterase-domain-containing Legionella effectors. Proc. Natl. Acad. Sci. USA116, 23518–23526 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  43. Shin, D. et al. Regulation of phosphoribosyl-linked serine ubiquitination by deubiquitinases DupA and DupB. Mol. Cell77, 164–179.e6 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  44. Bhogaraju, S. et al. Inhibition of bacterial ubiquitin ligases by SidJ-calmodulin catalysed glutamylation. Nature572, 382–386 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  45. Black, M. H. et al. Bacterial pseudokinase catalyzes protein polyglutamylation to inhibit the SidE-family ubiquitin ligases. Science364, 787–792 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  46. Robinson, N. E. & Robinson, A. B. Use of Merrifield solid phase peptide synthesis in investigations of biological deamidation of peptides and proteins. Biopolymers90, 297–306 (2008). ArticleCASPubMedGoogle Scholar
  47. Flatau, G. et al. Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature387, 729–733 (1997). This article, along with ref. 48, reports the discovery of Gln deamidase activity for CNF family effectors.ArticleCASPubMedGoogle Scholar
  48. Schmidt, G. et al. Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature387, 725–729 (1997). This article, along with ref. 47, reports the discovery of Gln deamidase activity for CNF family effectors.ArticleCASPubMedGoogle Scholar
  49. Cui, J. et al. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science329, 1215–1218 (2010). This article reports the discovery of Gln deamidase activity for Cif family effectors.ArticleCASPubMedPubMed CentralGoogle Scholar
  50. Marchès, O. et al. Enteropathogenic and enterohaemorrhagic Escherichia coli deliver a novel effector called Cif, which blocks cell cycle G2/M transition. Mol. Microbiol.50, 1553–1567 (2003). ArticlePubMedCASGoogle Scholar
  51. Taieb, F., Nougayrède, J. P., Watrin, C., Samba-Louaka, A. & Oswald, E. Escherichia coli cyclomodulin Cif induces G2 arrest of the host cell cycle without activation of the DNA-damage checkpoint-signalling pathway. Cell. Microbiol.8, 1910–1921 (2006). ArticleCASPubMedGoogle Scholar
  52. Samba-Louaka, A. et al. Bacterial cyclomodulin Cif blocks the host cell cycle by stabilizing the cyclin-dependent kinase inhibitors p21 and p27. Cell. Microbiol.10, 2496–2508 (2008). ArticleCASPubMedGoogle Scholar
  53. Yao, Q. et al. A bacterial type III effector family uses the papain-like hydrolytic activity to arrest the host cell cycle. Proc. Natl. Acad. Sci. USA106, 3716–3721 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  54. Hsu, Y. et al. Structure of the cyclomodulin Cif from pathogenic Escherichia coli. J. Mol. Biol.384, 465–477 (2008). ArticleCASPubMedPubMed CentralGoogle Scholar
  55. Yu, C. et al. Gln40 deamidation blocks structural reconfiguration and activation of SCF ubiquitin ligase complex by Nedd8. Nat. Commun.6, 10053 (2015). ArticleCASPubMedGoogle Scholar
  56. Sanada, T. et al. The Shigella flexneri effector OspI deamidates UBC13 to dampen the inflammatory response. Nature483, 623–626 (2012). ArticleCASPubMedGoogle Scholar
  57. Valleau, D. et al. Discovery of ubiquitin deamidases in the pathogenic arsenal of Legionella pneumophila. Cell Rep.23, 568–583 (2018). ArticleCASPubMedGoogle Scholar
  58. Gan, N. et al. Legionella pneumophila regulates the activity of UBE2N by deamidase-mediated deubiquitination. EMBO J.39, e102806 (2020). ArticleCASPubMedGoogle Scholar
  59. Gan, N., Nakayasu, E. S., Hollenbeck, P. J. & Luo, Z. Q. Legionella pneumophila inhibits immune signalling via MavC-mediated transglutaminase-induced ubiquitination of UBE2N. Nat. Microbiol.4, 134–143 (2019). ArticleCASPubMedGoogle Scholar
  60. Cruz-Migoni, A. et al. A Burkholderia pseudomallei toxin inhibits helicase activity of translation factor eIF4A. Science334, 821–824 (2011). ArticleCASPubMedGoogle Scholar
  61. Hoffmann, C. et al. The Yersinia pseudotuberculosis cytotoxic necrotizing factor (CNFY) selectively activates RhoA. J. Biol. Chem.279, 16026–16032 (2004). ArticleCASPubMedGoogle Scholar
  62. Zhang, L. et al. Type III effector VopC mediates invasion for Vibrio species. Cell Rep.1, 453–460 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  63. Mukherjee, S. et al. Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature477, 103–106 (2011). This article reports the discovery of phosphocholine transferase activity.ArticleCASPubMedPubMed CentralGoogle Scholar
  64. Yarbrough, M. L. et al. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science323, 269–272 (2009). ArticleCASPubMedGoogle Scholar
  65. Worby, C. A. et al. The fic domain: regulation of cell signaling by adenylylation. Mol. Cell34, 93–103 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  66. Campanacci, V., Mukherjee, S., Roy, C. R. & Cherfils, J. Structure of the Legionella effector AnkX reveals the mechanism of phosphocholine transfer by the FIC domain. EMBO J.32, 1469–1477 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  67. Engel, P. et al. Adenylylation control by intra- or intermolecular active-site obstruction in Fic proteins. Nature482, 107–110 (2012). ArticleCASPubMedGoogle Scholar
  68. Sreelatha, A. et al. Protein AMPylation by an evolutionarily conserved pseudokinase. Cell175, 809–821.e819 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  69. Gavriljuk, K. et al. Unraveling the phosphocholination mechanism of the Legionella pneumophila enzyme AnkX. Biochemistry55, 4375–4385 (2016). ArticleCASPubMedGoogle Scholar
  70. Goody, P. R. et al. Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins. EMBO J.31, 1774–1784 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  71. Yao, Q. et al. Structure and specificity of the bacterial cysteine methyltransferase effector NleE suggests a novel substrate in human DNA repair pathway. PLoS Pathog.10, e1004522 (2014). ArticlePubMedPubMed CentralCASGoogle Scholar
  72. Zhang, L. et al. Cysteine methylation disrupts ubiquitin-chain sensing in NF-κB activation. Nature481, 204–208 (2011). This article reports the discovery of cysteine methylation.ArticlePubMedCASGoogle Scholar
  73. Zhang, Y., Mühlen, S., Oates, C. V., Pearson, J. S. & Hartland, E. L. Identification of a distinct substrate-binding domain in the bacterial cysteine methyltransferase effectors NleE and OspZ. J. Biol. Chem.291, 20149–20162 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  74. Ding, J. et al. Structural and functional insights into host death domains inactivation by the bacterial arginine GlcNAcyltransferase effector. Mol Cell74, 922–935.e926 (2019). ArticleCASPubMedGoogle Scholar
  75. Li, S. et al. Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature501, 242–246 (2013). This article, along with ref. 76, reports the discovery of arginine GlcNAcylation.ArticleCASPubMedGoogle Scholar
  76. Pearson, J. S. et al. A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature501, 247–251 (2013). This article, along with ref. 75, reports the discovery of arginine GlcNAcylation.ArticleCASPubMedPubMed CentralGoogle Scholar
  77. Newson, J. P. M. et al. Salmonella effectors SseK1 and SseK3 target death domain proteins in the TNF and TRAIL signaling pathways. Mol. Cell. Proteomics18, 1138–1156 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  78. Xu, Y. et al. A bacterial effector reveals the V-ATPase-ATG16L1 axis that initiates xenophagy. Cell178, 552–566.e520 (2019). This article reports the discovery of glutamine ADP-ribosylation.ArticleCASPubMedGoogle Scholar
  79. Lim, D. V., Simpson, J. M., Kearns, E. A. & Kramer, M. F. Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin. Microbiol. Rev.18, 583–607 (2005). ArticleCASPubMedPubMed CentralGoogle Scholar
  80. Enninga, J., Mounier, J., Sansonetti, P. & Tran Van Nhieu, G. Secretion of type III effectors into host cells in real time. Nat. Methods2, 959–965 (2005). ArticleCASPubMedGoogle Scholar
  81. Isberg, R. R., O’Connor, T. J. & Heidtman, M. The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat. Rev. Microbiol.7, 13–24 (2009). ArticleCASPubMedGoogle Scholar
  82. Mitchell, A., Wei, P. & Lim, W. A. Oscillatory stress stimulation uncovers an Achilles’ heel of the yeast MAPK signaling network. Science350, 1379–1383 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  83. Zhao, J. et al. Bioorthogonal engineering of bacterial effectors for spatial-temporal modulation of cell signaling. ACS Cent. Sci.5, 145–152 (2019). ArticleCASPubMedGoogle Scholar
  84. Wei, P. et al. Bacterial virulence proteins as tools to rewire kinase pathways in yeast and immune cells. Nature488, 384–388 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  85. Ochtrop, P., Ernst, S., Itzen, A. & Hedberg, C. Exploring the substrate scope of the bacterial phosphocholine transferase AnkX for versatile protein functionalization. ChemBioChem20, 2336–2340 (2019). ArticleCASPubMedGoogle Scholar
  86. Heller, K. et al. Covalent protein labeling by enzymatic phosphocholination. Angew. Chem. Int. Edn Engl.54, 10327–10330 (2015). ArticleCASGoogle Scholar
  87. Baker, S. J., Payne, D. J., Rappuoli, R. & De Gregorio, E. Technologies to address antimicrobial resistance. Proc. Natl. Acad. Sci. USA115, 12887–12895 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  88. Allen, R. C., Popat, R., Diggle, S. P. & Brown, S. P. Targeting virulence: can we make evolution-proof drugs? Nat. Rev. Microbiol.12, 300–308 (2014). ArticleCASPubMedGoogle Scholar
  89. Dickey, S. W., Cheung, G. Y. C. & Otto, M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat. Rev. Drug Discov.16, 457–471 (2017). ArticleCASPubMedGoogle Scholar
  90. Lakemeyer, M., Zhao, W., Mandl, F. A., Hammann, P. & Sieber, S. A. Thinking outside the box-novel antibacterials to tackle the resistance crisis. Angew. Chem. Int. Edn Engl.57, 14440–14475 (2018). ArticleCASGoogle Scholar
  91. McShan, A. C. & De Guzman, R. N. The bacterial type III secretion system as a target for developing new antibiotics. Chem. Biol. Drug Des.85, 30–42 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  92. Kauppi, A. M., Nordfelth, R., Uvell, H., Wolf-Watz, H. & Elofsson, M. Targeting bacterial virulence: inhibitors of type III secretion in Yersinia. Chem. Biol.10, 241–249 (2003). ArticleCASPubMedGoogle Scholar
  93. Slepenkin, A., Chu, H., Elofsson, M., Keyser, P. & Peterson, E. M. Protection of mice from a Chlamydia trachomatis vaginal infection using a Salicylidene acylhydrazide, a potential microbicide. J. Infect. Dis.204, 1313–1320 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  94. Lewallen, D. M. et al. Inhibiting AMPylation: a novel screen to identify the first small molecule inhibitors of protein AMPylation. ACS Chem. Biol.9, 433–442 (2014). ArticleCASPubMedGoogle Scholar
  95. Salomon, D. & Orth, K. What pathogens have taught us about posttranslational modifications. Cell Host Microbe14, 269–279 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  96. Kingdon, H. S., Shapiro, B. M. & Stadtman, E. R. Regulation of glutamine synthetase. 8. ATP: glutamine synthetase adenylyltransferase, an enzyme that catalyzes alterations in the regulatory properties of glutamine synthetase. Proc. Natl. Acad. Sci. USA58, 1703–1710 (1967). ArticleCASPubMedPubMed CentralGoogle Scholar
  97. Müller, M. P. et al. The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science329, 946–949 (2010). ArticlePubMedGoogle Scholar
  98. Ham, H. et al. Unfolded protein response-regulated Drosophila Fic (dFic) protein reversibly AMPylates BiP chaperone during endoplasmic reticulum homeostasis. J. Biol. Chem.289, 36059–36069 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  99. Sanyal, A. et al. A novel link between Fic (filamentation induced by cAMP)-mediated adenylylation/AMPylation and the unfolded protein response. J. Biol. Chem.290, 8482–8499 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  100. Broncel, M., Serwa, R. A., Bunney, T. D., Katan, M. & Tate, E. W. Global profiling of Huntingtin-associated protein E (HYPE)-mediated AMPylation through a chemical proteomic approach. Mol. Cell. Proteomics15, 715–725 (2016). ArticleCASPubMedGoogle Scholar
  101. Grammel, M., Luong, P., Orth, K. & Hang, H. C. A chemical reporter for protein AMPylation. J. Am. Chem. Soc.133, 17103–17105 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  102. Kielkowski, P. et al. FICD activity and AMPylation remodelling modulate human neurogenesis. Nat. Commun.11, 517 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar

Acknowledgements

This work was supported in part by a Tufts Collaborates Award to R.A.S. The authors gratefully acknowledge K. Allen, D. Walt, and J. Kritzer for helpful feedback regarding the preparation of this manuscript.